Controlling the Skin Barrier Quality through the Application of Polymeric Films Containing Microspheres with Encapsulated Plant Extract

Author:

Kozlowska JustynaORCID,Tylkowski BartoszORCID,Stachowiak Natalia,Prus-Walendziak Weronika

Abstract

Human skin has protective functions and it is a barrier that protects the interior of the body from harmful environmental factors and pathogen penetration. An important role of the skin is also to prevent the loss of water from the body and if the skin barrier is damaged, the amount of water emitted from the internal environment is increased. Therefore, it is crucial to recovery and maintenance of epidermal barrier integrity. The aim of the current work was to encapsulate Calendula officinalis flower extract in gelatin microspheres and then incorporation microspheres into thin polymeric films made from sodium alginate or mixture of sodium alginate and starch. Such materials may find applications in the cosmetic field for example in the preparation of masks for skin, according to the Calendula officinalis flower extract wide influence on skin condition. Thus, the release profile of this extract from the materials was tested under conditions corresponding to the skin (pH 5.4, 37 °C). The mechanical properties, surface free energy, and moisture content of obtained films were measured. To determine the barrier quality of the stratum corneum, transepidermal water loss (TEWL) and skin color measurements were performed. The loaded microspheres were successfully incorporated into polymeric films without affecting its useful properties. Although the values of Young’s modulus and the moisture content were decreased after film modification by microspheres addition, the skin parameters were much better after application of films with microspheres. The results confirmed that obtained materials can be potentially used in cosmetics to improve the skin barrier quality.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3