Sensor Fusion Architecture for Fault Diagnosis with a Predefined-Time Observer

Author:

Begovich Ofelia1ORCID,Lizárraga Adrián1ORCID,Ramírez-Treviño Antonio1ORCID

Affiliation:

1. Cinvestav del IPN, Unidad Guadalajara, Av. del Bosque 1145, Zapopan Jalisco C.P. 45019, Mexico

Abstract

This study focuses on generating reliable signals from measured noisy signals through an enhanced sensor fusion method. The main contribution of this research is the development of a novel sensor fusion architecture that creates virtual sensors, improving the system’s redundancy. This architecture utilizes an input observer to estimate the system input, then it is introduced to the system model, the output of which is the virtual sensor. Then, this virtual sensor includes two filtering stages, both derived from the system’s dynamics—the input observer and the system model—which effectively diminish noise in the virtual sensors. Afterwards, the same architecture includes a classical sensor fusion scheme and a voter to merge the virtual sensors with the real measured signals, enhancing the signal reliability. The effectiveness of this method is shown by applying merged signals to two distinct diagnosers: one utilizes a high-order sliding mode observer, while the other employs an innovative extension of a predefined-time observer. The findings indicate that the proposed architecture improves diagnostic results. Moreover, a three-wheeled omnidirectional mobile robot equipped with noisy sensors serves as a case study, confirming the approach’s efficacy in an actual noisy setting and highlighting its principal characteristics. Importantly, the diagnostic systems can manage several simultaneous actuator faults.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3