The Design and Development of Woven Textile Solar Panels

Author:

Abeywickrama Neranga1,Kgatuke Matholo1,Marasinghe Kalana1,Nashed Mohamad Nour1,Oliveira Carlos1,Shahidi Arash M.1ORCID,Dias Tilak1ORCID,Hughes-Riley Theodore1ORCID

Affiliation:

1. Advanced Textiles Research Group, Nottingham School of Art & Design, Nottingham Trent University, Bonington Building, Dryden Street, Nottingham NG1 4GG, UK

Abstract

Over the past few years, alternative power supplies to either supplement or replace batteries for electronic textile and wearable applications have been sought, with the development of wearable solar energy harvesting systems gaining significant interest. In a previous publication the authors reported a novel concept to craft a yarn capable of harvesting solar energy by embedding miniature solar cells within the fibers of a yarn (solar electronic yarns). The aim of this publication is to report the development of a large-area textile solar panel. This study first characterized the solar electronic yarns, and then analyzed the solar electronic yarns once woven into double cloth woven textiles; as part of this study, the effect of different numbers of covering warp yarns on the performance of the embedded solar cells was explored. Finally, a larger woven textile solar panel (510 mm × 270 mm) was constructed and tested under different light intensities. It was observed that a PMAX = 335.3 ± 22.4 mW of energy could be harvested on a sunny day (under 99,000 lux lighting conditions).

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3