The Design of a Biomimetic Hierarchical Thin-Walled Structure Inspired by a Lotus Leaf and Its Mechanical Performance Analysis

Author:

Liu Lili1,Li Longhai1,Guo Ce2,Ge Yizheng1,Chen Yue1,Zhang Lei1

Affiliation:

1. School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou 221018, China

2. Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China

Abstract

Inspired by the macro- and microstructures of the lotus leaf, a series of biomimetic hierarchical thin-walled structures (BHTSs) was proposed and fabricated, exhibiting improved mechanical properties. The comprehensive mechanical properties of the BHTSs were evaluated using finite element (FE) models constructed in ANSYS, which were validated by the experimental results. Light-weight numbers (LWNs) were used as an index to assess these properties. The simulation results were compared with the experimental data to validate the findings. The compression results indicated that the maximum load carried by each BHTS was very similar, with the highest bearing load being 32,571 N and the lowest being 30,183 N, resulting in only a 7.9% difference between them. In terms of the LWN-C values, the BHTS-1 exhibited the highest value at 318.51 N/g, while the BHTS-6 had the lowest value at 295.16 N/g. For the torsion and bending results, these findings suggested that increasing the bifurcation structure at the end side of the thin tube branch significantly improved the torsional resistance properties of the thin tube. For the impact characteristics of the proposed BHTSs, enhancing the bifurcation structure at the end of the thin tube branch significantly increased the energy absorption capacity and improved the energy absorption (EA) and the specific energy absorption (SEA) values of the thin tube. The BHTS-6 had the best structural design in terms of both the EA and SEA among all the BHTSs, but its CLE value was slightly lower than that of the BHTS-7, indicating slightly lower structural efficiency. This study provides a new idea and method for developing new lightweight and high-strength materials as well as designing more effective energy absorption structures. At the same time, this study has important scientific value in understanding how biological structures in nature exhibit their unique mechanical properties.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Science Research Project of Xuzhou University of Technology

Jiangsu Industry University Research Cooperation Projects

National Defense Basic Scientific Research Project

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Literature review on thin-walled and cellular structure designs for energy absorption;IOP Conference Series: Materials Science and Engineering;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3