Plasma Electrolytic Oxidation Coatings of a 6061 Al Alloy in an Electrolyte with the Addition of K2ZrF6

Author:

Tu Chaohui1,Chen Xuanyu1,Liu Cancan1,Li Deye1

Affiliation:

1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China

Abstract

In this study, white thermal control coatings were produced on a 6061 Al alloy using plasma electrolytic oxidation (PEO). The coatings were mainly formed by incorporating K2ZrF6. The phase composition, microstructure, thickness, and roughness of the coatings were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), a surface roughness tester, and an eddy current thickness meter, respectively. The solar absorbance and infrared emissivity of the PEO coatings were measured using a UV–Vis–NIR spectrophotometer and FTIR spectrometer, respectively. The addition of K2ZrF6 to the trisodium phosphate electrolyte was found to significantly enhance the thickness of the white PEO coating on the Al alloy, with the coating thickness increasing in proportion to the concentration of K2ZrF6. Meanwhile, the surface roughness was observed to stabilize at a certain level as the K2ZrF6 concentration increased. At the same time, the addition of K2ZrF6 altered the growth mechanism of the coating. In the absence of K2ZrF6 in the electrolyte, the PEO coating on the Al alloy surface predominantly developed outwards. However, with the introduction of K2ZrF6, the coating’s growth mode transitioned to a combination of outward and inward growth, with the proportion of inward growth progressively increasing in proportion to the concentration of K2ZrF6. The addition of K2ZrF6 substantially enhanced the adhesion of the coating to the substrate and endowed it with exceptional thermal shock resistance, as the inward growth of the coating was facilitated by the presence of K2ZrF6. In addition, the phase composition of the aluminum alloy PEO coating in the electrolyte containing K2ZrF6 was dominated by tetragonal zirconia (t-ZrO2) and monoclinic zirconia (m-ZrO2). With the increase in K2ZrF6 concentration, the L* value of the coating increased from 71.69 to 90.53. Moreover, the coating absorbance α decreased, while the emissivity ε increased. Notably, at a K2ZrF6 concentration of 15 g/L, the coating exhibited the lowest absorbance (0.16) and the highest emissivity (0.72), which are attributed to the enhanced roughness resulting from the substantial increase in coating thickness caused by the addition of K2ZrF6, as well as the presence of ZrO2 with higher emissivity within the coating.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3