Role of Lanthanides and Bilayer Fe2As2 in the Electronic Properties of RbLn2Fe4As4O2 (Ln = Gd, Tb, and Dy) Superconductors

Author:

Huang Yi-Na1ORCID,Liu Da-Yong2,Mei Hong-Ying3,Han Li4,Yang Huan-Ping1

Affiliation:

1. Department of Physics, School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China

2. Department of Physics, School of Sciences, Nantong University, Nantong 226019, China

3. Henan Provincial Key Laboratory of Smart Lighting, School of Information Engineering, Huanghuai University, Zhumadian 463000, China

4. Qilu Institute of Technology, School of Chemical and Biological Engineering, Jinan 250200, China

Abstract

The superconducting transition temperatures (Tc) of RbGd2Fe4As4O2, RbTb2Fe4As4O2, and RbDy2Fe4As4O2 are 35 K, 34.7 K, and 34.3 K without doping, respectively. For the first time, we have studied the high-temperature nonmagnetic state and the low-temperature magnetic ground state of 12442 materials, RbTb2Fe4As4O2 and RbDy2Fe4As4O2, using first principles calculations and comparing them with RbGd2Fe4As4O2. We also performed a detailed study of the effects of lanthanides and bilayer Fe2As2. We predict that the ground state of RbLn2Fe4As4O2 (Ln = Gd, Tb, and Dy) is spin-density-wave-type, in-plane, striped antiferromagnets, and the magnetic moment around each Fe atom is about 2 μB. We also found that the structural differences caused by the simple ionic radius have little effect on the properties of these three materials. Different lanthanide elements themselves play a major role in the electronic properties of the materials. It can be confirmed that the effect of Gd on RbLn2Fe4As4O2 is indeed different from that of Tb and Dy, and the presence of Gd is more conducive to interlayer electron transfer. This means that Gd can transfer more electrons from the GdO layer to the FeAs layer compared to Tb and Dy. Therefore, RbGd2Fe4As4O2 has a stronger internal coupling strength of the bilayer Fe2As2 layer. This can explain why the Tc of RbGd2Fe4As4O2 is slightly higher than that of RbTb2Fe4As4O2 and RbDy2Fe4As4O2.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3