Investigation of Pre-Aged Hardening Single-Point Incremental Forming Process and Mechanical Properties of AA6061 Aluminum Alloy

Author:

Zhang Yao1,Zhang Zhichao2ORCID,Li Yan1,Hu Lan2,Pang Qiu3,Hu Zhili145

Affiliation:

1. Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang 441000, China

2. Shanghai Aerospace Equipments Manufacturer Co., Ltd., Shanghai 200245, China

3. Department of Mechanical and Electrical Engineering, Wuhan Donghu University, Wuhan 430212, China

4. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

5. Hubei Engineering Research Center for Green & Precision Material Forming, Wuhan University of Technology, Wuhan 430070, China

Abstract

Currently, the single-point incremental forming process often faces issues such as insufficient formability of the sheet metal and low strength of the formed parts. To address this problem, this study proposes a pre-aged hardening single-point incremental forming (PH-SPIF) process that offers several notable benefits, including shortened procedures, reduced energy consumption, and increased sheet forming limits while maintaining high mechanical properties and geometric accuracy in formed components. To investigate forming limits, an Al-Mg-Si alloy was used to form different wall angles during the PH-SPIF process. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) analyses were conducted to characterize microstructure evolution during the PH-SPIF process. The results demonstrate that the PH-SPIF process can achieve a forming limit angle of up to 62°, with excellent geometric accuracy, and hardened component hardness reaching up to 128.5 HV, surpassing the strength of the AA6061-T6 alloy. The DSC and TEM analyses reveal numerous pre-existing thermostable GP zones in the pre-aged hardening alloys, which undergo transformation into dispersed β” phases during the forming procedure, leading to the entanglement of numerous dislocations. The dual effects of phase transformation and plastic deformation during the PH-SPIF process significantly contribute to the desirable mechanical properties of the formed components.

Funder

National Natural Science Foundation of China

Independent Innovation Projects of the Hubei Longzhong Laboratory

111 Project

Key Research and Development Program of Hubei Province

National innovation and entrepreneurship training program for college students of Wuhan University of Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3