Mechanical Properties of the Pt-CNT Composite under Uniaxial Deformation: Tension and Compression

Author:

Yankovaskaya Ustina I.1ORCID,Korznikova Elena A.23ORCID,Korpusova Sofia D.4,Zakharov Pavel V.4ORCID

Affiliation:

1. Department of Physics, Polzunov Altai State Technical University, Barnaul 656038, Russia

2. Polytechnic Institute (Branch) in Mirny, North-Eastern Federal University, Mirny 678170, Russia

3. Institute for Metals Superplasticity Problems of RAS, Ufa 450001, Russia

4. Department of Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia

Abstract

Composite materials are gaining increasing attention from researchers worldwide due to their ability to offer tailored properties for various technical challenges. One of these promising fields is metal matrix composites, including carbon-reinforced metals and alloys. These materials allow for the reduction of density while simultaneously enhancing their functional properties. This study is focused on the Pt-CNT composite, its mechanical characteristics, and structural features under uniaxial deformation depending on temperature and mass fractions of carbon nanotube (CNT). The mechanical behavior of platinum reinforced with carbon nanotubes of diameters varying in the interval 6.62–16.55 Å under uniaxial tension and compression deformation has been studied by the molecular dynamics method. Simulations for tensile and compression deformations have been done for all specimens at different temperatures (viz. 300 K, 500 K, 700 K, 900 K, 1100 K, and 1500 K). The calculated mechanical characteristics allow us to conclude that, compared to pure platinum, the Young’s modulus increased by about 60%. The results indicate that yield and tensile strength values decreases with increase in temperature for all simulation blocks. This increase was due to the inherent high axial rigidity of CNTs. In this work, these characteristics are calculated for the first time for Pt-CNT. It can be concluded that CNTs can be an effective reinforcing material for composites based on a metal matrix under tensile strain.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3