Biological Response of Human Gingival Fibroblasts to Zinc-Doped Hydroxyapatite Designed for Dental Applications—An In Vitro Study

Author:

Badea Madalina Andreea12,Balas Mihaela1ORCID,Popa Marcela3,Borcan Teodora1,Bunea Anamaria-Cristina1,Predoi Daniela4,Dinischiotu Anca1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania

2. Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663 Bucharest, Romania

3. Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania

4. National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania

Abstract

This study aimed to investigate the biological response induced by hydroxyapatite (HAp) and zinc-doped HAp (ZnHAp) in human gingival fibroblasts and to explore their antimicrobial activity. The ZnHAp (with xZn = 0.00 and 0.07) powders, synthesized by the sol-gel method, retained the crystallographic structure of pure HA without any modification. Elemental mapping confirmed the uniform dispersion of zinc ions in the HAp lattice. The size of crystallites was 18.67 ± 2 nm for ZnHAp and 21.54 ± 1 nm for HAp. The average particle size was 19.38 ± 1 nm for ZnHAp and 22.47 ± 1 nm for HAp. Antimicrobial studies indicated an inhibition of bacterial adherence to the inert substrate. In vitro biocompatibility was tested on various doses of HAp and ZnHAp after 24 and 72 h of exposure and revealed that cell viability decreased after 72 h starting with a dose of 31.25 µg/mL. However, cells retained membrane integrity and no inflammatory response was induced. High doses (such as 125 µg/mL) affected cell adhesion and the architecture of F-actin filaments, while in the presence of lower doses (such as 15.625 µg/mL), no modifications were observed. Cell proliferation was inhibited after treatment with HAp and ZnHAp, except the dose of 15.625 µg/mL ZnHAp at 72 h of exposure, when a slight increase was observed, proving an improvement in ZnHAp activity due to Zn doping.

Funder

Research Institute of the University of Bucharest

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3