Affiliation:
1. Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
2. School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
Abstract
Organic light-emitting diodes (OLEDs) are energy-efficient; however, the coordinating ligand can affect their stability. Sky-blue phosphorescent Pt(II) compounds with a C^N chelate, fluorinated-dbi (dbi = [1-(2,4-diisopropyldibenzo [b,d]furan-3-yl)-2-phenyl-1H-imidazole]), and acetylactonate (acac) (1)/picolinate (pic) (2) ancillary ligands were synthesized. The molecular structures were characterized using various spectroscopic methods. The Pt(II) Compound Two exhibited a distorted square planar geometry, with several intra- and inter-molecular interactions involving Cπ⋯H/Cπ⋯Cπ stacking. Complex One emitted bright sky-blue light (λmax = 485 nm) with a moderate photoluminescent quantum efficiency (PLQY) of 0.37 and short decay time (6.1 µs) compared to those of 2. Theoretical calculations suggested that the electronic transition of 1 arose from ligand(C^N)-centered π–π* transitions combined with metal-to-ligand charge-transfer (MLCT), whereas that of 2 arose from MLCT and ligand(C^N)-to-ligand(pic) charge-transfer (LLCT), with minimal contribution from C^N chelate to the lowest unoccupied molecular orbital (LUMO). Multi-layered phosphorescent OLEDs using One as a dopant and a mixed host, mCBP/CNmCBPCN, were successfully fabricated. At a 10% doping concentration of 1, a current efficiency of 13.6 cdA−1 and external quantum efficiency of 8.4% at 100 cdm−2 were achieved. These results show that the ancillary ligand in phosphorescent Pt(II) complexes must be considered.
Funder
National Research Foundation of Korea (NRF) grant funded by the Republic of Korea government
Technology Innovation Program
Ministry of Trade, Industry and Energy
Subject
General Materials Science