Microstructure, Mechanical and Tribological Properties of High-Entropy Carbide (MoNbTaTiV)C5

Author:

Zhang Shubo1,Qin Falian1,Gong Maoyuan1,Wu Zihao1,Liu Meiling12,Chen Yuhong12,Hai Wanxiu12

Affiliation:

1. College of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China

2. Key Laboratory of Powder Materials & Advanced Ceramics, North Minzu University, Yinchuan 750021, China

Abstract

High-entropy carbide (NbTaTiV)C4 (HEC4), (MoNbTaTiV)C5 (HEC5), and (MoNbTaTiV)C5-SiC (HEC5S) multiphase ceramics were prepared by spark plasma sintering (SPS) at 1900 to 2100 °C, using metal carbide and silicon carbide (SiC) as raw materials. Their microstructure, and mechanical and tribological properties were investigated. The results showed that the (MoNbTaTiV)C5 synthesized at 1900–2100 °C had a face-centered cubic structure and density higher than 95.6%. The increase in sintering temperature was conducive to the promotion of densification, growth of grains, and diffusion of metal elements. The introduction of SiC helped to promote densification but weakened the strength of the grain boundaries. The average specific wear rates for HEC4 were within an order of magnitude of 10−5 mm3/N·m, and for HEC5 and HEC5S were within a range of 10−7 to 10−6 mm3/N·m. The wear mechanism of HEC4 was abrasion, while that of HEC5 and HEC5S was mainly oxidation wear.

Funder

Natural Science Foundation of Ningxia Province, China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3