Reliable Methods for Classification, Characterization, and Design of Cellular Structures for Patient-Specific Implants

Author:

Nemes-Károly István1,Szebényi Gábor12ORCID

Affiliation:

1. Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary

2. MTA-BME Lendület Lightweight Polymer Composites Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary

Abstract

In our research, our goal was to develop a characterization method that can be universally applied to periodic cell structures. Our work involved the accurate tuning of the stiffness properties of cellular structure components that can significantly reduce the number of revision surgeries. Up to date porous, cellular structures provide the best possible osseointegration, while stress shielding and micromovements at the bone-implant interface can be reduced by implants with elastic properties equivalent to bone tissue. Furthermore, it is possible to store a drug inside implants with a cellular structure, for which we have also prepared a viable model. In the literature, there is currently no established uniform stiffness sizing procedure for periodic cellular structures but also no uniform designation to identify the structures. A uniform marking system for cellular structures was proposed. We developed a multi-step exact stiffness design and validation methodology. The method consists of a combination of FE (Finite Element) simulations and mechanical compression tests with fine strain measurement, which are finally used to accurately set the stiffness of components. We succeeded in reducing the stiffness of test specimens designed by us to a level equivalent to that of bone (7–30 GPa), and all of this was also validated with FE simulation.

Funder

National Research, Development and Innovation Office

Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund

National Young Talent Scholarship

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3