Temporal Dynamics and Predictive Modelling of Streamflow and Water Quality Using Advanced Statistical and Ensemble Machine Learning Techniques

Author:

Farzana Syeda Zehan12ORCID,Paudyal Dev Raj1ORCID,Chadalavada Sreeni2,Alam Md Jahangir23ORCID

Affiliation:

1. School of Surveying and Built Environment, University of Southern Queensland (UniSQ), Toowoomba, QLD 4350, Australia

2. School of Engineering, University of Southern Queensland (UniSQ), Springfield Lakes, QLD 4300, Australia

3. Murray-Darling Basin Authority (MDBA), Canberra, ACT 2601, Australia

Abstract

Changes in water quality are closely linked to seasonal fluctuations in streamflow, and a thorough understanding of how these variations interact across different time scales is important for the efficient management of surface water bodies such as rivers, lakes, and reservoirs. The aim of this study is to explore the potential connection between streamflow, rainfall, and water quality and propose an optimised ensemble model for the prediction of a water quality index (WQI). This study modelled the changes in five water quality parameters such as ammonia nitrogen (NH3-N), phosphate (PO43−), pH, turbidity, total dissolved solids (TDS), and their associated WQI caused by rainfall and streamflow. The analysis was conducted across three temporal scales, weekly, monthly, and seasonal, using a generalised additive model (GAM) in Toowoomba, Australia. TDS, turbidity, and WQI exhibited a significant nonlinear variation with the changes in streamflow in the weekly and monthly scales. Additionally, pH demonstrated a significant linear to weakly linear correlation with discharge across the three temporal scales. For the accurate prediction of WQI, this study proposed an ensemble model integrating an extreme gradient boosting (XGBoost) and Bayesian optimisation (BO) algorithm, using streamflow as an input across the same temporal scales. The results for the three temporal scales provided the best accuracy of monthly data, based on the accuracy metrics R2 (0.91), MAE (0.20), and RMSE (0.42). The comparison between the test and predicted data indicated that the prediction model overestimated the WQI at some points. This study highlights the efficiency of integrating rainfall, streamflow, and water quality correlations for WQI prediction, which can provide valuable insights for guiding future water management strategies in similar catchment areas, especially amidst changing climatic conditions.

Funder

the Graduate Research School, University of Southern Queensland

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3