Antibacterial 3D-Printed Silver Nanoparticle/Poly Lactic-Co-Glycolic Acid (PLGA) Scaffolds for Bone Tissue Engineering

Author:

Chen Fajun12,Han Jian23,Guo Zeyong23,Mu Chongjing4,Yu Chuandi23,Ji Zhibo5,Sun Lei56,Wang Yujuan2ORCID,Wang Junfeng12ORCID

Affiliation:

1. Department of Anatomy, School of Basic Medicine, Anhui Medical University, No.81, Meishan Road, Shushan District, Hefei 230032, China

2. High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei 230031, China

3. Graduate School of University of Science and Technology of China, Hefei 230026, China

4. The Affiliated Suzhou Hospital of Nanjing Medical University, 16 Baita West Road, Suzhou 215000, China

5. Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China

6. Department of Oral Surgery, Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China

Abstract

Infectious bone defects present a major challenge in the clinical setting currently. In order to address this issue, it is imperative to explore the development of bone tissue engineering scaffolds that are equipped with both antibacterial and bone regenerative capabilities. In this study, we fabricated antibacterial scaffolds using a silver nanoparticle/poly lactic-co-glycolic acid (AgNP/PLGA) material via a direct ink writing (DIW) 3D printing technique. The scaffolds’ microstructure, mechanical properties, and biological attributes were rigorously assessed to determine their fitness for repairing bone defects. The surface pores of the AgNPs/PLGA scaffolds were uniform, and the AgNPs were evenly distributed within the scaffolds, as confirmed via scanning electron microscopy (SEM). Tensile testing confirmed that the addition of AgNPs enhanced the mechanical strength of the scaffolds. The release curves of the silver ions confirmed that the AgNPs/PLGA scaffolds released them continuously after an initial burst. The growth of hydroxyapatite (HAP) was characterized via SEM and X-ray diffraction (XRD). The results showed that HAP was deposited on the scaffolds, and also confirmed that the scaffolds had mixed with the AgNPs. All scaffolds containing AgNPs exhibited antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). A cytotoxicity assay using mouse embryo osteoblast precursor cells (MC3T3-E1) showed that the scaffolds had excellent biocompatibility and could be used for repairing bone tissue. The study shows that the AgNPs/PLGA scaffolds have exceptional mechanical properties and biocompatibility, effectively inhibiting the growth of S. aureus and E. coli. These results demonstrate the potential application of 3D-printed AgNPs/PLGA scaffolds in bone tissue engineering.

Funder

Hefei Institutes of Physical Science Director’s Fund

USTC Innovation and Entrepreneurship Fund for Graduate Students

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3