Abstract
In this study, diethylenetriamine-functional magnetic core-shell polymer modified graphene oxide (DETA-MPs-GO) was prepared via precipitation polymerization and amidation reaction, and it was characterized by transmission electron microscopy (TEM), Fourier-transformed infrared spectroscopy (FTIR), and X-ray diffractometer (XRD). Subsequently, a magnetic solid-phase extraction (MSPE) procedure was applied to the as-synthesized DETA-MPs-GO for the detection of nine fungicides in fruit samples, prior to ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). The homogenized fruit samples, spiked with D-labelled internal standards, were firstly extracted by 5 mL of acetonitrile twice and then purified by DETA-MPs-GO adsorbents. The optimization of the adsorption and elution conditions of DETA-MPs-GO toward fungicides was carried out to attain a satisfactory adsorption performance and desorption efficiency. The adsorption mechanism was carefully investigated, and the results revealed that a synergistic adsorption mechanism, including hydrogen bond and a π–π stacking interaction, was confirmed. Moreover, the limits of quantitation (LOQs) of the proposed approach were in the range of 0.01 to 0.30 μg/kg under the optimum conditions. The average recoveries at three spiking levels were 84.9% to 105.2%, with relative standard deviations (RSDs) varying from 0.8% to 8.2% (n = 6). The developed method was successfully utilized for the screening and detection of fungicides in 81 fruit samples purchased from markets. A detailed survey was carried out about the concentration distribution, types of fungicides, and combined use of fungicides in different fruits.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献