Urban Park Systems to Support Sustainability: The Role of Urban Park Systems in Hot Arid Urban Climates

Author:

Kim Gunwoo,Coseo Paul

Abstract

Quantifying ecosystem services in urban areas is complex. However, existing ecosystem service typologies and ecosystem modeling can provide a means towards understanding some key biophysical links between urban forests and ecosystem services. This project addresses broader concepts of sustainability by assessing the urban park system in Phoenix, Arizona’s hot urban climate. This project aims to quantify and demonstrate the multiple ecosystem services provided by Phoenix’s green infrastructure (i.e., urban park system), including its air pollution removal values, carbon sequestration and storage, avoided runoff, structural value, and the energy savings it provides for city residents. Modeling of ecosystem services of the urban park system revealed around 517,000 trees within the system, representing a 7.20% tree cover. These trees remove about 3630 tons (t) of carbon (at an associated value of $285,000) and about 272 t of air pollutants (at an associated value of $1.16 million) every year. Trees within Phoenix’s urban park system are estimated to reduce annual residential energy costs by $106,000 and their structural value is estimated at $692 million. The findings of this research will increase our knowledge of the value of green infrastructure services provided by different types of urban vegetation and assist in the future design, planning and management of green infrastructure in cities. Thus, this study has implications for both policy and practice, contributing to a better understanding of the multiple benefits of green infrastructure and improving the design of green spaces in hot arid urban climates around the globe.

Publisher

MDPI AG

Subject

Forestry

Reference46 articles.

1. Synthesis Report,2005

2. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment

3. Urban Population, Development and the Environment 2011,2011

4. Creating the park cool island in an inner-city neighborhood: heat mitigation strategy for Phoenix, AZ

5. The City and the Coming Climate: Climate Change in the Places We Live;Stone,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3