An Efficient and Robust Star Identification Algorithm Based on Neural Networks

Author:

Wang BendongORCID,Wang Hao,Jin Zhonghe

Abstract

A lost-in-space star identification algorithm based on a one-dimensional Convolutional Neural Network (1D CNN) is proposed. The lost-in-space star identification aims to identify stars observed with corresponding catalog stars when there is no prior attitude information. With the help of neural networks, the robustness and the speed of the star identification are improved greatly. In this paper, a modified log-Polar mapping is used to constructed rotation-invariant star patterns. Then a 1D CNN is utilized to classify the star patterns associated with guide stars. In the 1D CNN model, a global average pooling layer is used to replace fully-connected layers to reduce the number of parameters and the risk of overfitting. Experiments show that the proposed algorithm is highly robust to position noise, magnitude noise, and false stars. The identification accuracy is 98.1% with 5 pixels position noise, 97.4% with 5 false stars, and 97.7% with 0.5 Mv magnitude noise, respectively, which is significantly higher than the identification rate of the pyramid, optimized grid and modified log-polar algorithms. Moreover, the proposed algorithm guarantees a reliable star identification under dynamic conditions. The identification accuracy is 82.1% with angular velocity of 10 degrees per second. Furthermore, its identification time is as short as 32.7 miliseconds and the memory required is about 1920 kilobytes. The algorithm proposed is suitable for current embedded systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-FOV Star Identification Based on Wedge-Shaped Triangle Pattern;IEEE Transactions on Instrumentation and Measurement;2024

2. A new star detection approach for a satellite-onboard star tracker;Advances in Space Research;2023-09

3. Adaptive Absolute Attitude Determination Algorithm for a Fine Guidance Sensor;Electronics;2023-08-14

4. Design of Fast Star Image Extraction Module for Autonomous Star Sensors Based on FPGA;2023 Intelligent Methods, Systems, and Applications (IMSA);2023-07-15

5. Anti-noise Star Image Extraction Algorithm for Star Trackers Based on YOLOv5;2023 Intelligent Methods, Systems, and Applications (IMSA);2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3