Metagenomic Analysis of Plasma Microbial Extracellular Vesicles in Patients Receiving Mechanical Ventilation: A Pilot Study

Author:

Park Jinkyeong,Lee Jae Jun,Hong YoonkiORCID,Seo Hochan,Shin Tae-Seop,Hong Ji YoungORCID

Abstract

Background: Previous studies reported a significant association between pneumonia outcome and the respiratory microbiome. There is increasing interest in the roles of bacterial extracellular vesicles (EVs) in various diseases. We studied the composition and function of microbiota-derived EVs in the plasma of patients receiving mechanical ventilation to evaluate whether they can be used as a diagnostic marker and to predict clinical outcomes. Methods: Plasma samples (n = 111) from 59 mechanically ventilated patients (41 in the pneumonia group; 24 in the nursing home and hospital-associated infection [NHAI] group) were prospectively collected on days one and seven. After isolating the bacterial EVs from plasma samples, nucleic acid was extracted for 16S rRNA gene pyrosequencing. The samples were evaluated to determine the α and β diversity, bacterial composition, and predicted functions. Results: Principal coordinates analysis revealed significantly different clustering of microbial EVs between the pneumonia and non-pneumonia groups. The proportions of Lactobacillus, Cutibacterium, and Sphingomonas were significantly different between the pneumonia and non-pneumonia groups. In addition, the abundances of Lactobacillus and Bifidobacterium were significantly higher in the non-NHAI than the NHAI group. In the analysis of β diversity, the structure of microbial EVs differed significantly different between 28-day survivors and non-survivors (Bray-Curtis distance, p = 0.014). Functional profiling revealed significant differences between the pneumonia and non-pneumonia groups. The longitudinal change in predicted functions of microbial EV genes showed a significant difference between 28-day survivors and non-survivors. Conclusions: Bacterial microbiota–derived EVs in the plasma have potential as diagnostic and prognostic markers for patients receiving mechanical ventilation. Further large prospective studies are needed to determine the clinical utility of plasma microbiota-EVs in intubated patients.

Funder

Korea Health Industry Development Institute

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3