Prioritization of Candidate Biomarkers for Degenerative Aortic Stenosis through a Systems Biology-Based In-Silico Approach

Author:

Corbacho-Alonso Nerea,Sastre-Oliva TamaraORCID,Corros CeciliaORCID,Tejerina Teresa,Solis Jorge,López-Almodovar Luis F.,Padial Luis R.,Mourino-Alvarez Laura,Barderas Maria G.ORCID

Abstract

Degenerative aortic stenosis is the most common valve disease in the elderly and is usually confirmed at an advanced stage when the only treatment is surgery. This work is focused on the study of previously defined biomarkers through systems biology and artificial neuronal networks to understand their potential role within aortic stenosis. The goal was generating a molecular panel of biomarkers to ensure an accurate diagnosis, risk stratification, and follow-up of aortic stenosis patients. We used in silico studies to combine and re-analyze the results of our previous studies and, with information from multiple databases, established a mathematical model. After this, we prioritized two proteins related to endoplasmic reticulum stress, thrombospondin-1 and endoplasmin, which have not been previously validated as markers for aortic stenosis, and analyzed them in a cell model and in plasma from human subjects. Large-scale bioinformatics tools allow us to extract the most significant results after using high throughput analytical techniques. Our results could help to prevent the development of aortic stenosis and open the possibility of a future strategy based on more specific therapies.

Funder

Instituto de Salud Carlos III

Sociedad Española de Cardiología

Regional Government of Castile-La Mancha

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3