The Effectiveness of Predicting Suicidal Ideation through Depressive Symptoms and Social Isolation Using Machine Learning Techniques

Author:

Kim SunhaeORCID,Lee KounseokORCID

Abstract

(1) Background: Social isolation is a major risk factor for suicidal ideation. In this study, we investigated whether the evaluation of both depression and social isolation in combination could effectively predict suicidal ideation; (2) Methods: A total of 7994 data collected from community residents were analyzed. Statistical analysis was performed using age, the Patient Health Questionnaire-9, and the Lubben Social Network Scale as predictors as the dependent variables for suicidal ideation; machine learning (ML) methods K-Nearest Neighbors, Random Forest, and Neural Network Classification were used; (3) Results: The prediction of suicidal ideation using depression and social isolation showed high area under the curve (0.643–0.836) and specificity (0.959–0.987) in all ML techniques. In the predictor model (model 2) that additionally evaluated social isolation, the validation accuracy consistently increased compared to the depression-only model (model 1); (4) Conclusions: It is confirmed that the machine learning technique using depression and social isolation can be an effective method when predicting suicidal ideation.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3