Research on Coupling Knowledge Embedding and Data-Driven Deep Learning Models for Runoff Prediction

Author:

Li Yanling1ORCID,Wei Junfang1ORCID,Sun Qianxing1ORCID,Huang Chunyan1ORCID

Affiliation:

1. School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Abstract

Accurate runoff prediction is crucial for watershed water resource management, flood prevention, and hydropower station scheduling. Data-driven models have been increasingly applied to runoff prediction tasks and have achieved impressive results. However, existing data-driven methods may produce unreasonable predictions due to the lack of prior knowledge guidance. This study proposes a multivariate runoff prediction model that couples knowledge embedding with data-driven approaches, integrating information contained in runoff probability distributions as constraints into the data-driven model and optimizing the existing loss function with prior probability density functions (PDFs). Using the main stream in the Yellow River Basin with nine hydrological stations as an example, we selected runoff feature factors using the transfer entropy method, chose a temporal convolutional network (TCN) as the data-driven model, and optimized model parameters with the IPSO algorithm, studying univariate input models (TCN-UID), multivariable input models (TCN-MID), and the coupling model. The results indicate the following: (1) Among numerous influencing factors, precipitation, sunshine duration, and relative humidity are the key feature factors driving runoff occurrence; (2) the coupling model can effectively fit the extremes of runoff sequences, improving prediction accuracy in the training set by 6.9% and 4.7% compared to TCN-UID and TCN-MID, respectively, and by 5.7% and 2.8% in the test set. The coupling model established through knowledge embedding not only retains the advantages of data-driven models but also effectively addresses the poor prediction performance of data-driven models at extremes, thereby enhancing the accuracy of runoff predictions.

Funder

Henan Higher Education Institutions

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3