Reduction of Volatile Organic Compounds (VOCs) Emissions from Laundry Dry-Cleaning by an Integrated Treatment Process of Condensation and Adsorption

Author:

Song Mugeun,Kim Kyunghoon,Cho Changmin,Kim DaekeunORCID

Abstract

Volatile organic compounds (VOCs) are intermittently emitted at high concentrations (tens of thousands of ppmv) from small-scale laundry shops in urban areas, affecting the urban atmospheric environment. In this study, we suggested integrating VOC treatment processes incorporating condensation and adsorption in series to remove VOCs released from small-scale laundry dryers (laundry weighing less than 30 kg). We designed two different processes depending on regeneration modes for adsorber beds; an open-circuit flow process and a closed-loop flow process in regeneration mode. Our VOC treatment processes enable sustainable operation via the regeneration of adsorbers on a regular basis. Before applying the VOC treatment processes, average concentration of total volatile organic compounds (TVOCs) was 4099 ppmv (12,000 ppmv of the peak concentration) during the drying operation. After applying our closed-loop flow process, TVOC concentration decreased to 58 ppmv, leading to 98.5% removal efficiency. We also verified the robustness of our process performance in a continuous operation (30 cycles) by using a process simulation program. Lastly, we observed that our integrated treatment process can contribute to reductions in ozone and secondary organic aerosol generation by 90.4% and 95.9%, respectively. We concluded that our integrated VOC treatment processes are applicable to small-scale laundry shops releasing high-concentration VOCs intermittently, and are beneficial to the atmospheric environment.

Funder

Ministry of Science and ICT, South Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3