Turning Pools in Stepped Fishways: Biological Assessment via Fish Response and CFD Models

Author:

Bravo-Córdoba Francisco JavierORCID,Fuentes-Pérez Juan FranciscoORCID,Valbuena-Castro Jorge,Martínez de Azagra-Paredes Andrés,Sanz-Ronda Francisco JavierORCID

Abstract

With the aim of building more compact fishways and adapting them to field conditions to improve their location by fish, it is common to use turning pools, reducing the longitudinal development of the construction. However, depending on their design, turning pools may affect the hydraulic performance of the fishway and consequently the fish passage. To study these phenomena, turning pools in a vertical slot and in different configurations of submerged notches with bottom orifice fishway types were assessed. Both types of fishways were studied using numerical 3D models via OpenFOAM, a computational fluid dynamics software, in combination with fish responses, assessed with PIT (Passive Integrated Transponder) tag telemetry for three different species of potamodromous cyprinids in several fishways. Results show differences between the hydrodynamics of straight and turning pools, with lower values in the hydrodynamic variables in turning pools. Regarding fish behavior, the ascent was slower in turning pools but with no effect on passage success and without being a problem for fish migration. This information validates the use of turning pools as a key design component for fishways for studied species.

Funder

MICINN Spain gobernment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference54 articles.

1. Design of Fishways and Other Fish. Facilities;Clay,2017

2. The future of fish passage science, engineering, and practice

3. FAO/DVWK Fish Passes: Design, Dimensions, and Monitoring,2002

4. Ecohydraulics of pool-type fishways: Getting past the barriers

5. POOL FISHWAYS, PRE-BARRAGES AND NATURAL BYPASS CHANNELS

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3