Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation

Author:

Wang Chang,Zhao Zongya,Ren Qiongqiong,Xu Yongtao,Yu Yi

Abstract

Various retinal vessel segmentation methods based on convolutional neural networks were proposed recently, and Dense U-net as a new semantic segmentation network was successfully applied to scene segmentation. Retinal vessel is tiny, and the features of retinal vessel can be learned effectively by the patch-based learning strategy. In this study, we proposed a new retinal vessel segmentation framework based on Dense U-net and the patch-based learning strategy. In the process of training, training patches were obtained by random extraction strategy, Dense U-net was adopted as a training network, and random transformation was used as a data augmentation strategy. In the process of testing, test images were divided into image patches, test patches were predicted by training model, and the segmentation result can be reconstructed by overlapping-patches sequential reconstruction strategy. This proposed method was applied to public datasets DRIVE and STARE, and retinal vessel segmentation was performed. Sensitivity (Se), specificity (Sp), accuracy (Acc), and area under each curve (AUC) were adopted as evaluation metrics to verify the effectiveness of proposed method. Compared with state-of-the-art methods including the unsupervised, supervised, and convolutional neural network (CNN) methods, the result demonstrated that our approach is competitive in these evaluation metrics. This method can obtain a better segmentation result than specialists, and has clinical application value.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference35 articles.

1. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Sub-Image Classification;Sohini;IEEE J. Biomed. Health Inform.,2015

2. Entropy and Fractal Antennas

3. On the Weierstrass-Mandelbrot fractal function

4. Harmonic Sierpinski Gasket and Applications

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3