Testing the Performance of an Innovative Markerless Technique for Quantitative and Qualitative Gait Analysis

Author:

Simoni Laura,Scarton Alessandra,Gerli Filippo,Macchi Claudio,Gori Federico,Pasquini Guido,Pogliaghi Silvia

Abstract

Gait abnormalities such as high stride and step frequency/cadence (SF—stride/second, CAD—step/second), stride variability (SV) and low harmony may increase the risk of injuries and be a sentinel of medical conditions. This research aims to present a new markerless video-based technology for quantitative and qualitative gait analysis. 86 healthy individuals (mead age 32 years) performed a 90 s test on treadmill at self-selected walking speed. We measured SF and CAD by a photoelectric sensors system; then, we calculated average ± standard deviation (SD) and within-subject coefficient of variation (CV) of SF as an index of SV. We also recorded a 60 fps video of the patient. With a custom-designed web-based video analysis software, we performed a spectral analysis of the brightness over time for each pixel of the image, that reinstituted the frequency contents of the videos. The two main frequency contents (F1 and F2) from this analysis should reflect the forcing/dominant variables, i.e., SF and CAD. Then, a harmony index (HI) was calculated, that should reflect the proportion of the pixels of the image that move consistently with F1 or its supraharmonics. The higher the HI value, the less variable the gait. The correspondence SF-F1 and CAD-F2 was evaluated with both paired t-Test and correlation and the relationship between SV and HI with correlation. SF and CAD were not significantly different from and highly correlated with F1 (0.893 ± 0.080 Hz vs. 0.895 ± 0.084 Hz, p < 0.001, r2 = 0.99) and F2 (1.787 ± 0.163 Hz vs. 1.791 ± 0.165 Hz, p < 0.001, r2 = 0.97). The SV was 1.84% ± 0.66% and it was significantly and moderately correlated with HI (0.082 ± 0.028, p < 0.001, r2 = 0.13). The innovative video-based technique of global, markerless gait analysis proposed in our study accurately identifies the main frequency contents and the variability of gait in healthy individuals, thus providing a time-efficient, low-cost means to quantitatively and qualitatively study human locomotion.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3