Multi-Color Space Network for Salient Object Detection

Author:

Lee KyungjunORCID,Jeong JechangORCID

Abstract

The salient object detection (SOD) technology predicts which object will attract the attention of an observer surveying a particular scene. Most state-of-the-art SOD methods are top-down mechanisms that apply fully convolutional networks (FCNs) of various structures to RGB images, extract features from them, and train a network. However, owing to the variety of factors that affect visual saliency, securing sufficient features from a single color space is difficult. Therefore, in this paper, we propose a multi-color space network (MCSNet) to detect salient objects using various saliency cues. First, the images were converted to HSV and grayscale color spaces to obtain saliency cues other than those provided by RGB color information. Each saliency cue was fed into two parallel VGG backbone networks to extract features. Contextual information was obtained from the extracted features using atrous spatial pyramid pooling (ASPP). The features obtained from both paths were passed through the attention module, and channel and spatial features were highlighted. Finally, the final saliency map was generated using a step-by-step residual refinement module (RRM). Furthermore, the network was trained with a bidirectional loss to supervise saliency detection results. Experiments on five public benchmark datasets showed that our proposed network achieved superior performance in terms of both subjective results and objective metrics.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3