A Method for Measuring Parameters of Defective Ellipse Based on Vision

Author:

Zhang He12ORCID,Wang Li12,Liu Wenya12,Cui Jiwen12,Tan Jiubin12

Affiliation:

1. Center of Ultra-Precision Optoelectronic Instrument, Harbin Institute of Technology, Harbin 150080, China

2. Key Lab of Ultra-Precision Intelligent Instrumentation, Harbin Institute of Technology, Ministry of Industry and Information Technology, Harbin 150080, China

Abstract

Ellipse detection has a very wide range of applications in the field of object detection, especially in the geometric size detection of inclined microporous parts. However, due to the processing methods applied to the parts, there are certain defects in the features. The existing ellipse detection methods do not meet the needs of rapid detection due to the problems of false detection and time consumption. This article proposes a method of quickly obtaining defective ellipse parameters based on vision. It mainly uses the approximation principle of circles to repair defective circles, then combines this with morphological processing to obtain effective edge points, and finally uses the least squares method to obtain elliptical parameters. By simulating the computer-generated images, the results demonstrate that the center fitting error of the simulated defect ellipses with major and minor axes of 600 and 400 pixels is less than 1 pixel, the major and minor axis fitting error is less than 3 pixels, and the tilt angle fitting error is less than 0.1°. Further, experimental verification was conducted on the engine injection hole. The measurement results show that the surface size deviation was less than 0.01 mm and the angle error was less than 0.15°, which means the parameters of defective ellipses can obtained quickly and effectively. It is thus suitable for engineering applications, and can provide visual guidance for the precise measurement of fiber probes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

1. Effect of self-excited instability on single liquid swirl injector flow characteristics;Jeong;Acta Astronaut.,2021

2. Center Extraction Method of Multiple and Overlapping Faculae Based on Ellipse Fitting;Li;Acta Opt. Sin.,2020

3. Enhanced direct least square fitting of ellipses;Maini;Int. J. Pattern Recognit. Artif. Intell.,2006

4. Robust ellipse fitting via alternating direction method of multipliers;Liang;Signal Process.,2019

5. Real-Time Ellipse Detection for Robotics Applications;Keipour;IEEE Robot. Autom. Lett.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3