Multimodality Video Acquisition System for the Assessment of Vital Distress in Children

Author:

Boivin Vincent12,Shahriari Mana13ORCID,Faure Gaspar1,Mellul Simon1,Tiassou Edem Donatien1,Jouvet Philippe13ORCID,Noumeir Rita12

Affiliation:

1. CHU Sainte-Justine Research Centre, Montréal, QC H3T 1C5, Canada

2. Department of Electrical Engineering, Ecole de Technologie Supérieure (ETS), Montréal, QC H3C 1K3, Canada

3. Department of Pediatrics, Université de Montréal (UdeM), Montréal, QC H3T 1C5, Canada

Abstract

In children, vital distress events, particularly respiratory, go unrecognized. To develop a standard model for automated assessment of vital distress in children, we aimed to construct a prospective high-quality video database for critically ill children in a pediatric intensive care unit (PICU) setting. The videos were acquired automatically through a secure web application with an application programming interface (API). The purpose of this article is to describe the data acquisition process from each PICU room to the research electronic database. Using an Azure Kinect DK and a Flir Lepton 3.5 LWIR attached to a Jetson Xavier NX board and the network architecture of our PICU, we have implemented an ongoing high-fidelity prospectively collected video database for research, monitoring, and diagnostic purposes. This infrastructure offers the opportunity to develop algorithms (including computational models) to quantify vital distress in order to evaluate vital distress events. More than 290 RGB, thermographic, and point cloud videos of each 30 s have been recorded in the database. Each recording is linked to the patient’s numerical phenotype, i.e., the electronic medical health record and high-resolution medical database of our research center. The ultimate goal is to develop and validate algorithms to detect vital distress in real time, both for inpatient care and outpatient management.

Funder

Fonds de recherche du Québec (FRQS) on Artificial Intelligence and Health Care

Quebec Ministry of Health and Social Services

Quebec Respiratory Health Research Network

Centre Hospitalier Universitaire (CHU) Sainte-Justine

Canada Foundation for Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3