Design of a High-Sensitivity Microstrip Patch Sensor Antenna Loaded with a Defected Ground Structure Based on a Complementary Split Ring Resonator

Author:

Yeo JunhoORCID,Lee Jong-Ig

Abstract

A comparative study to determine the most highly sensitive resonant frequency among the first four resonant frequencies of a conventional patch antenna and defected ground structure (DGS)-loaded patch antennas using commonly used DGS geometries in the literature, such as a rectangular slit, single-ring complementary split ring resonators (CSRRs) with different split positions, and double-ring CSRRs (DR-CSRRs) with different locations below the patch, for relative permittivity measurement of planar materials was conducted. The sensitivity performance for placing the DGS on two different locations, a center and a radiating edge of the patch, was also compared. Finally, the effect of scaling down the patch size of the DGS-loaded patch antenna was investigated in order to enhance the sensitivities of the higher order resonant frequencies. It was found that the second resonant frequency of the DR-CSRR DGS-loaded patch antenna aligned on a radiating edge with a half scaled-down patch size shows the highest sensitivity when varying the relative permittivity of the material under test from 1 to 10. In order to validate the simulated performance of the proposed antenna, the conventional and the proposed patch antennas were fabricated on 0.76-mm-thick RF-35 substrate, and they were used to measure their sensitivity when several standard dielectric substrate samples with dielectric constants ranging from 2.17 to 10.2 were loaded. The measured sensitivity of the second resonant frequency for the proposed DGS-loaded patch antenna was 4.91 to 7.72 times higher than the first resonant frequency of the conventional patch antenna, and the measured performance is also slightly better compared to the patch antenna loaded with a meander-line slot on the patch.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Planar microwave sensors for complex permittivity characterization of materials and their applications;Saeed,2012

2. Improved technique for determining complex permittivity with the transmission/reflection method;Baker-Jarvis;IEEE Trans. Microw. Theory Tech.,1990

3. Free-space, broadband measurements of high-temperature, complex dielectric properties at microwave frequencies;Varadan;IEEE Trans. Instrum. Meas.,1991

4. A critical study of the open-ended coaxial line sensor for RF and microwave complex permittivity measurements;Grant;J. Phys. E Sci. Instrum.,1989

5. Wide bandwidth measurement of complex permittivity of liquids using coplanar lines;Raj;IEEE Trans. Instrum. Meas.,2001

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3