Abstract
A comparative study to determine the most highly sensitive resonant frequency among the first four resonant frequencies of a conventional patch antenna and defected ground structure (DGS)-loaded patch antennas using commonly used DGS geometries in the literature, such as a rectangular slit, single-ring complementary split ring resonators (CSRRs) with different split positions, and double-ring CSRRs (DR-CSRRs) with different locations below the patch, for relative permittivity measurement of planar materials was conducted. The sensitivity performance for placing the DGS on two different locations, a center and a radiating edge of the patch, was also compared. Finally, the effect of scaling down the patch size of the DGS-loaded patch antenna was investigated in order to enhance the sensitivities of the higher order resonant frequencies. It was found that the second resonant frequency of the DR-CSRR DGS-loaded patch antenna aligned on a radiating edge with a half scaled-down patch size shows the highest sensitivity when varying the relative permittivity of the material under test from 1 to 10. In order to validate the simulated performance of the proposed antenna, the conventional and the proposed patch antennas were fabricated on 0.76-mm-thick RF-35 substrate, and they were used to measure their sensitivity when several standard dielectric substrate samples with dielectric constants ranging from 2.17 to 10.2 were loaded. The measured sensitivity of the second resonant frequency for the proposed DGS-loaded patch antenna was 4.91 to 7.72 times higher than the first resonant frequency of the conventional patch antenna, and the measured performance is also slightly better compared to the patch antenna loaded with a meander-line slot on the patch.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献