Abstract
Vernier permanent-magnet machines have been attracted more and more attention because of their high torque density. In this paper, the sensorless control strategy of the novel axially magnetized Vernier permanent-magnet (AMVPM) machine is presented. First, the inductance non-linearity is investigated under different load conditions. Second, the mathematical model is established in cooperation with the finite element method. After that, the back electromotive force based sensorless control strategy is developed according to the state equation of the motor. In the sensorless drive, the model reference adaptive system (MRAS) technique incorporated with the inductance non-linearity is used for the speed estimation. The modified control strategy not only increases the stability but also improves the dynamic response of the system. Finally, the simulation results show that the modified MRAS is of high estimation precision, and the AMVPM machine can be well controlled, and the experimental results validated the theoretical design process.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献