Selective Catalytic Removal of High Concentrations of NOx at Low Temperature

Author:

Yu BoORCID,Liu Qing,Yang Heng,Li Qichao,Lu Hanjun,Yang Li,Liu FangORCID

Abstract

Three vanadium-based catalysts were used to remove high concentrations of nitrogen oxides, and the catalysts’ performance of de-NOx and anti-H2O under the high concentrations of NOx were investigated. The V-Mo-W/TiO2 catalysts were tested under 1500 mL/min gas flow (GHSV = 500 h−1, 2.4% NO2, 4.78% NH3, 13% O2, 4% H2O, 5% CO2) and characterized by BET, SEM, EDS, XRD, XPS, H2-TPR, and NH3-TPD; then, their physical and chemical properties were analyzed. The results showed that under the influence of H2O, the NOx conversion of the V-Mo-W/TiO2 catalysts remained above 97% at 200–280 °C indicating that the catalysts had high catalytic activity and strong water resistance. The analysis of the characterization results showed that the larger specific surface area of the catalyst, the higher acid content, stronger redox ability, and higher V4+ and V3+ content were the reasons for the high NOx conversion. The surface area decreased and the microstructure become smoother after the reaction, which may be caused by thermal sintering, but the overall morphology did not change. Comparing the H2-TPR and NH3-TPD of V1.6Mo1.7W1.8/TiO2 before and after NH3-SCR reaction, it was found that the reduction peak and the intensity of the acid sites of the sample had not changed, which indicated that the catalyst had good anti-sintering performance and a long lifetime. This is significant for followup long-term engineering application experiments.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3