Digital Twin for the Prediction of Extreme Loads on a Wave Energy Conversion System

Author:

Katsidoniotaki EiriniORCID,Psarommatis FoivosORCID,Göteman MalinORCID

Abstract

Wave energy is a renewable energy source with the potential to contribute to the global electricity demand, but a remaining challenge is the survivability of the wave energy converters in harsh offshore conditions. To understand the system dynamics and improve the reliability, experimental and numerical studies are usually conducted. However, these processes are costly and time-consuming. A statistical model able to provide equivalent results is a promising approach. In this study, the digital twin of the CFD solution is developed and implemented for the prediction of the force in the mooring system of a point-absorber wave energy converter during extreme wave conditions. The results show that the digital twin can predict the mooring force with 90.36% average accuracy. Moreover, the digital twin needs only a few seconds to provide the solution, while the CFD code requires up to several days. By creating a digital analog of a wave energy converter and showing that it is able to predict the load in critical components during extreme wave conditions, this work constitutes an innovative approach in the wave energy field.

Funder

Swedish Research Council

Alexander S Onassis Public Benefit Foundation

Swedish Energy Agency

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference64 articles.

1. COM(2020)741-EU Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future-EU Monitor https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vldwjbykscwq

2. Wave energy utilization: A review of the technologies

3. Review of wave energy technologies and the necessary power-equipment

4. On the reversed LCOE calculation: Design constraints for wave energy commercialization

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3