MLD–MPC for Ultra-Supercritical Circulating Fluidized Bed Boiler Unit Using Subspace Identification

Author:

Yang Chen,Zhang Tao,Zhang Zonglong,Sun Li

Abstract

Before carbon capture and storage technologies can truly be promoted and applied, and nuclear or renewable energy power generation can become predominant, it is important to further develop more efficient and ultra-low emission USC units on the basis of leveraging the strengths of CFB technology. In view of this complex system with strong nonlinearity such as the boiler-turbine unit of a thermal power unit, the establishment of a model that is suitable for control is indispensable for the operation and the economics of the process. In this study the form of the nonlinear model after linearization at the steady-state point has been fully considered and an improved subspace identification method, which is based on the steady-state point deviations data, was proposed in order to identify a piecewise affine model. In addition, the construction of the excitation signal in practical applications has been fully considered. The identification results demonstrate that this method has a better adaptability to strong nonlinear systems. The identification normalized root mean square errors of each working condition were almost all less than 10%. On this basis, a framework that is widely applicable to complex system control has been established by combining with the mixed logic dynamic (MLD) model. The canonical form realization was performed in order to transfer the local models into the same state basis. The predictive control was carried out on the boiler-turbine system of a 660-MW ultra-supercritical circulating fluidized bed unit that was based on the above framework. The results indicate that the predictive control performance is closely related to the setting value of the ramp rate and, therefore, prove the effectiveness of the framework.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference61 articles.

1. The implications of coal consumption in the power sector for China’s CO2 peaking target

2. Will China achieve its 2060 carbon neutral commitment from the provincial perspective?

3. China’s energy transition pathway in a carbon neutral vision

4. The up-to-date development and future of circulating fluidized bed combustion technology;Yue;Electr. Power,2016

5. Experimental study on gaseous pollutant emission characteristics of semi-coke combustion in an oxy-fuel circulating fluidized bed with high oxygen concentration;Li;Proc. CSEE,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design Mechanism for the Fault Diagnosis System of Power Plant Boiler Based on Neural Networks;2023 IEEE 6th International Conference on Knowledge Innovation and Invention (ICKII);2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3