Robust Controller Considering Road Disturbances for a Vehicular Flywheel Battery System

Author:

Zhang Weiyu,Gu Xiaowei,Zhang Lindong

Abstract

At present, the stability study of the flywheel battery system under the influence of road conditions is only limited to the analysis of dynamic characteristics but also lacks effective controller considering road disturbances. In order to solve this defect and further improve the robust performance of vehicular flywheel battery systems under road disturbances, a robust controller considering interference of road surface roughness is proposed. Firstly, on the basis of a brief introduction to flywheel battery system structure, the influence degree of the flywheel by road condition is compared to find the key areas most affected by road disturbance factors. Then the nonlinear dynamic model of the axial suspension system is constructed, and the actual road surface roughness is regarded as the unmodeled dynamics of the external disturbance emphatically. Following, the established unknown system dynamics is approximated by radial basis function (RBF) neural network based on the minimum parameter learning method, the control input is generated by sliding-mode control law, and the weight adjustment of neural network is replaced by the designed adaptive law of parameter estimation. The effects of different levels of road surface roughness on the system are simulated, and the robustness of the proposed controller is verified based on the Lyapunov method. Finally, the experimental platform to simulate road disturbances is designed ingeniously. Experimental results show that the proposed controller can make the flywheel battery system have good robustness under different road conditions.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3