Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network

Author:

Sun Lichao,Qin Hang,Przystupa KrzysztofORCID,Majka MichalORCID,Kochan Orest

Abstract

Short-term load forecasting is viewed as one promising technology for demand prediction under the most critical inputs for the promising arrangement of power plant units. Thus, it is imperative to present new incentive methods to motivate such power system operations for electricity management. This paper proposes an approach for short-term electric load forecasting using long short-term memory networks and an improved sine cosine algorithm called MetaREC. First, using long short-term memory networks for a special kind of recurrent neural network, the dispatching commands have the characteristics of storing and transmitting both long-term and short-term memories. Next, four important parameters are determined using the sine cosine algorithm base on a logistic chaos operator and multilevel modulation factor to overcome the inaccuracy of long short-term memory networks prediction, in terms of the manual selection of parameter values. Moreover, the performance of the MetaREC method outperforms others with regard to convergence accuracy and convergence speed on a variety of test functions. Finally, our analysis is extended to the scenario of the MetaREC_long short-term memory with back propagation neural network, long short-term memory networks with default parameters, long short-term memory networks with the conventional sine-cosine algorithm, and long short-term memory networks with whale optimization for power load forecasting on a real electric load dataset. Simulation results demonstrate that the multiple forecasts with MetaREC_long short-term memory can effectively incentivize the high accuracy and stability for short-term power load forecasting.

Funder

2021 Wuxi Science and Technology Innovation and Entrepreneurship Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference70 articles.

1. Electric load forecasting methods: Tools for decision making

2. A methodology for Electric Power Load Forecasting

3. Load forecasting;Feinberg;Proceedings of the Applied Mathematics for Restructured Electric Power Systems

4. Small photovoltaic installation in the power grid;Przystupa;Proceedings of the 2019 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE),2019

5. The Internet of Things;Greengard,2015

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3