Abstract
Searching for economical and practical solutions to increase any transport substructure’s protection and stability is critical for ensuring the long-term viability and adequate load-bearing capacity. Piles are increasingly being used as an economical and environmentally sustainable solution to enhance the strength of soft subgrade soils on which embankments are raised. As per the available literature, there are two main strategies used to explain railway embankments’ performance: experimental approaches and numerical simulations on a broad scale. The purpose of this study is to examine the state-of-the-art literature on numerical modeling methods adopted to assess the performance of pile-supported rail embankments subjected to cyclic loading. The paper addresses the main results from various numerical methods to explain the appropriate mechanisms associated with the load deformation response. It also presents the key issues and drawbacks of these numerical methods concerning rail embankment development while outlining the specific shortcomings and research gaps relevant to enhanced future design and analysis.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference125 articles.
1. Assessing the Marginal Infrastructure Maintenance Wear and Tear Costs for Britain’s Railway Network;Wheat;J. Transp. Econ. Policy,2008
2. Performance of Ballast Influenced by Deformation and Degradation: Laboratory Testing and Numerical Modeling
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献