Inter-Regional Coordination to Improve Equality in the Agricultural Virtual Water Trade

Author:

Yan Dong,Jia Zhiwei,Xue Jie,Sun Huaiwei,Gui Dongwei,Liu Yi,Zeng Xiaofan

Abstract

Sustainable agriculture in China is threatened by rapid socioeconomic development, urbanization, and climate change. In addition, the distribution of freshwater resources between regions is highly unequal, and water shortages are common in arid regions. The virtual water trade can help to ease water shortages in arid areas by utilizing the comparative advantage of water resources in other areas. However, sometimes the patterns of the virtual water trade do not fit the distribution of water resources and, in these instances, inter-regional coordination would help to improve the level of equality in the virtual water trade. We combined the concept of the Gini coefficient with a multi-objective optimization model to investigate the inter-regional coordination of the virtual water trade in an arid region of China. Agricultural data from different regions of Gansu Province in 2014 were used to explore methods of improving the equality of virtual water flow patterns in the agricultural sector. Three constraints (a crop supply constraint, an irrigation water constraint, and an economic benefit constraint) were set up to investigate the relationship between different challenges and the effects of inter-regional coordination. Our results validated the use of the proposed method in Gansu Province and indicated that it could be applied to other arid regions. Variations in crop supply, irrigation water, and economic benefits were found among the different constraint scenarios, illustrating the trade-offs between water-saving and agricultural objectives. Our results also showed the balance between various factors, including the equality of the virtual water patterns, water-saving measures, and economic benefits. These results support the effectiveness of inter-regional coordination and indicate that the improvement in equality and the adjustment cost should be balanced. Our findings will help to guide the planning of local crop acreages to achieve the best virtual water balance model between regions.

Funder

National Natural Science Foundation of China

Hubei Natural Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3