A Crowdsourcing Approach for Sustainable Last Mile Delivery

Author:

Giret Adriana,Carrascosa Carlos,Julian Vicente,Rebollo Miguel,Botti VicenteORCID

Abstract

Sustainable transportation is one of the major concerns in cities. This concern involves all type of movements motivated by different goals (mobility of citizens, transportation of goods and parcels, etc.). The main goal of this work is to provide an intelligent approach for Sustainable Last Mile Delivery, by reducing (or even deleting) the need of dedicated logistic moves (by cars, and/or trucks). The method attempts to reduce the number of movements originated by the parcels delivery by taking advantage of the citizens’ movements. In this way our proposal follows a crowdsourcing approach, in which the citizens that moves in the city, because of their own needs, become temporal deliverers. The technology behind our approach relays on Multi-agent System techniques and complex network-based algorithms for optimizing sustainable delivery routes. These artificial intelligent approaches help to reduce the complexity of the scenario providing an efficient way to integrate the citizens’ routes that can be executed using the different transportation means and networks available in the city (public system, private transportation, eco-vehicles sharing systems, etc.). A complex network-based algorithm is used for computing and proposing an optimized Sustainable Last Mile Delivery route to the crowd. Moreover, the executed tests show the feasibility of the proposed solution, together with a high reduction of the CO 2 emission coming from the delivery trucks that, in the case studies, are no longer needed for delivery.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference32 articles.

1. Towards smart open dynamic fleets;Billhardt;Multi-Agent Syst. Agreem. Technol. LNCS,2016

2. The Multi-agent Layer of CALMeD SURF;Rebollo,2017

3. An ontology for sustainable intelligent transportation systems;Giret,2018

4. Modeling Public Transport Passenger Flows in the Era of Intelligent Transport Systems;Gentile,2016

5. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3