Phenomenological Material Model for First-Order Electrocaloric Material

Author:

Unmüßig Sabrina1ORCID,Bach David1ORCID,Nouchokgwe Youri2,Defay Emmanuel2ORCID,Bartholomé Kilian1ORCID

Affiliation:

1. Fraunhofer Institut für Physikalische Messtechnik IPM, Georges-Köhler-Allee 301, 79110 Freiburg, Germany

2. Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422 Belvaux, Luxembourg

Abstract

Caloric cooling systems are potentially more efficient than systems based on vapour compression. Electrocaloric cooling systems use a phase transformation from the paraelectric to the ferroelectric state by applying or removing an electric field to pump heat. Lead scandium tantalate (PST) materials show a first-order phase transition and are one of the most promising candidates for electrocaloric cooling. To model caloric cooling systems, accurate and thermodynamically consistent material models are required. In this study, we use a phenomenological model based on an analytical equation for the specific heat capacity to describe the material behaviour of bulk PST material. This model is fitted to the experimental data, showing a very good agreement. Based on this model, essential material properties such as the adiabatic temperature change and isothermal entropy change of this material can be calculated.

Funder

Fraunhofer lighthouse project ElKaWe

Luxembourg National Research Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference28 articles.

1. IEA (International Energy Agency) (2022). World Energy Outlook 2022.

2. Goetzler, W., Zogg, R., Young, J., and Johnson, C. (2014). Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies, Navigant Consulting Inc.. Prepared for US Department of Energy.

3. Limited options for low-global-warming-potential refrigerants;McLinden;Nat. Commun.,2017

4. Umweltbundesamt (2022, March 22). Fluorinated Greenhouse Gases and Fully Halogenated CFCs, Available online: https://www.umweltbundesamt.de/en/topics/climate-energy/fluorinated-greenhouse-gases-fully-halogenated-cfcs.

5. Solid-state cooling with caloric materials;Takeuchi;Phys. Today,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3