The Driving Factors of Italy’s CO2 Emissions Based on the STIRPAT Model: ARDL, FMOLS, DOLS, and CCR Approaches

Author:

Pattak Dulal Chandra1,Tahrim Farian2,Salehi Mahdi3ORCID,Voumik Liton Chandra2ORCID,Akter Salma2,Ridwan Mohammad2,Sadowska Beata4ORCID,Zimon Grzegorz5ORCID

Affiliation:

1. Department of Banking & Insurance, Faculty of Business Studies, University of Dhaka, Dhaka 1205, Bangladesh

2. Department of Economics, Noakhali Science and Technology University, Noakhali 3814, Bangladesh

3. Department of Economics and Administrative Sciences, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran

4. Department of Accounting, Faculty of Economics, Finance and Management, University of Szczecin, 70-453 Szczecin, Poland

5. Faculty of Management, Rzeszow University of Technology, 35-959 Rzeszow, Poland

Abstract

As the sustainability of the environment is a very much concerning issue for developed countries, the drive of the paper is to reveal the effects of nuclear, environment-friendly, and non-friendly energy, population, and GDP on CO2 emission for Italy, a developed country. Using the extended Stochastic Regression on Population, Affluence, and Technology (STIRPAT) framework, the yearly data from 1972 to 2021 are analyzed in this paper through an Autoregressive Distributed Lag (ARDL) framework. The reliability of the study is also examined by employing Fully Modified Ordinary Least Square (FMOLS), Dynamic Ordinary Least Square (DOLS), and Canonical Cointegration Regression (CCR) estimators and also the Granger causality method which is used to see the directional relationship among the indicators. The investigation confirms the findings of previous studies by showing that in the longer period, rising Italian GDP and non-green energy by 1% can lead to higher CO2 emissions by 8.08% and 1.505%, respectively, while rising alternative and nuclear energy by 1% can lead to falling in CO2 emission by 0.624%. Although population and green energy adversely influence the upsurge of CO2, they seem insignificant. Robustness tests confirm these longer-period impacts. This analysis may be helpful in planning and developing strategies for future financial funding in the energy sector in Italy, which is essential if the country is to achieve its goals of sustainable development.

Funder

Minister of Science and Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3