Tracking Photovoltaic Power Output Schedule of the Energy Storage System Based on Reinforcement Learning

Author:

Guo Meijun1,Ren Mifeng1,Chen Junghui2,Cheng Lan1,Yang Zhile3

Affiliation:

1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Department of Chemical Engineering, Chung-Yuan Christian University, Taoyuan 320314, Taiwan

3. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

The inherent randomness, fluctuation, and intermittence of photovoltaic power generation make it difficult to track the scheduling plan. To improve the ability to track the photovoltaic plan to a greater extent, a real-time charge and discharge power control method based on deep reinforcement learning is proposed. Firstly, the photovoltaic and energy storage hybrid system and the mathematical model of the hybrid system are briefly introduced, and the tracking control problem is defined. Then, power generation plans on different days are clustered into four scenarios by the K-means clustering algorithm. The mean, standard deviation, and kurtosis of the power generation plant are used as the features. Based on the clustered results, the state, action, and reward required for reinforcement learning are set. In the constraint conditions of various variables, to increase the accuracy of the hybrid system for tracking the new generation schedule, the proximal policy optimization (PPO) algorithm is used to optimize the charging/discharging power of the energy storage system (ESS). Finally, the proposed control method is applied to a photovoltaic power station. The results of several valid experiments indicate that the average errors of tracking using the Proportion Integral Differential (PID), model predictive control (MPC) method, and the PPO algorithm in the same condition are 0.374 MW, 0.609 MW, and 0.104 MW, respectively, and the computing time is 1.134 s, 2.760 s, and 0.053 s, respectively. The consequence of these indicates that the proposed deep reinforcement learning-based control strategy is more competitive than the traditional methods in terms of generalization and computation time.

Funder

National Natural Science Foundation of China

Shanxi Provincial Natural Science Foundation, China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3