Pack-Level Modeling and Thermal Analysis of a Battery Thermal Management System with Phase Change Materials and Liquid Cooling

Author:

Sun Jixian1ORCID,Dan Dan1ORCID,Wei Mingshan1ORCID,Cai Senlin2,Zhao Yihang1ORCID,Wright Edward3ORCID

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. China Automotive Engineering Research Institute Co., Ltd., Chongqing 401122, China

3. Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

Electric vehicles are seen as the prevailing choice for eco-friendly transportation. In electric vehicles, the thermal management system of battery cells is of great significance, especially under high operating temperatures and continuous discharge conditions. To address this issue, a pack-level battery thermal management system with phase change materials and liquid cooling was discussed in this paper. A dynamic electro-thermal coupled model for cells, the enthalpy–porosity model for phase change materials, and the k-ε model for the coolant flow were used. Various parameters, such as ambient temperatures, discharge rates, components of phase change materials, inlet mass flow rates, and temperatures of the coolant were considered. The results indicated that a battery thermal management system with both phase change materials and liquid cooling is more effective than the one with only liquid cooling. The phase change material with a mass fraction of 10% expanded graphite in paraffin wax had a favorable performance for the battery thermal management system. Additionally, increasing the mass flow rate or decreasing the flow temperature of the coolant can reduce the maximum temperature of the battery pack. However, the former can limit the maximum temperature difference, while the latter will deteriorate the temperature uniformity. The present work may shed light on the design of battery thermal management systems in the electric vehicle industry.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3