Energy-and-Blocking-Aware Routing and Device Assignment in Software-Defined Networking—A MILP and Genetic Algorithm Approach

Author:

Riveros-Rojas Gerardo J.1,Cespedes-Sanchez Pedro P.1,Pinto-Roa Diego P.1ORCID,Legal-Ayala Horacio1ORCID

Affiliation:

1. Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo 2111, Paraguay

Abstract

Internet energy consumption has increased rapidly, and energy conservation has become a significant issue that requires focused research efforts. The most promising solution is to identify the minimum power subsets within the network and shut down unnecessary network devices and links to satisfy traffic loads. Due to their distributed network control, implementing a centralized and coordinated strategy in traditional networks is challenging. Software-Defined Networking (SDN) is an emerging technology with dynamic, manageable, cost-effective, and adaptable solutions. SDN decouples network control and forwarding functions, allowing network control to be directly programmable, centralizing control with a global network view to manage power states. Nevertheless, it is crucial to develop efficient algorithms that leverage the centralized control of SDN to achieve maximum energy savings and consider peak traffic times. Traffic demand usually cannot be satisfied, even when all network devices are active. This work jointly addresses the routing of traffic flows and the assignment of SDN devices to these flows, called the Routing and Device Assignment (RDA) problem. It simultaneously seeks to minimize the network’s energy consumption and blocked traffic flows. For this approach, we develop an exact solution based on Mixed-Integer Linear Programming (MILP) as well as a metaheuristic based on a Genetic Algorithm (GA) that seeks to optimize both criteria by routing flows efficiently and suspending devices not used by the flows. Conducted simulations on traffic environment scenarios show up to 34% savings in overall energy consumption for the MILP and 33% savings achieved by the GA. These values are better than those obtained using competitive state-of-the-art strategies.

Funder

National Council of Sciences and Technology of Paraguay

Facultad Politécnica, Universidad Nacional de Asunción

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3