M5GP: Parallel Multidimensional Genetic Programming with Multidimensional Populations for Symbolic Regression

Author:

Cárdenas Florido Luis123ORCID,Trujillo Leonardo14ORCID,Hernandez Daniel E.1ORCID,Muñoz Contreras Jose Manuel1

Affiliation:

1. Departamento de Ingeniería Eléctrica Electrónica, Posgrado en Ciencias de la Ingeniería, Tecnológico Nacional de México/IT de Tijuana, Tijuana 22430, Mexico

2. División de Estudios de Posgrado, Maestría en Sistemas Computacionales, Tecnológico Nacional de México/IT de La Paz, La Paz 23080, Mexico

3. Departamento de Sistemas y Computación, Tecnológico Nacional de México/IT de Ensenada, Ensenada 22780, Mexico

4. LASIGE, Department of Informatics, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal

Abstract

Machine learning and artificial intelligence are growing in popularity thanks to their ability to produce models that exhibit unprecedented performance in domains that include computer vision, natural language processing and code generation. However, such models tend to be very large and complex and impossible to understand using traditional analysis or human scrutiny. Conversely, Symbolic Regression methods attempt to produce models that are relatively small and (potentially) human-readable. In this domain, Genetic Programming (GP) has proven to be a powerful search strategy that achieves state-of-the-art performance. This paper presents a new GP-based feature transformation method called M5GP, which is hybridized with multiple linear regression to produce linear models, implemented to exploit parallel processing on graphical processing units for efficient computation. M5GP is the most recent variant from a family of feature transformation methods (M2GP, M3GP and M4GP) that have proven to be powerful tools for both classification and regression tasks applied to tabular data. The proposed method was evaluated on SRBench v2.0, the current standard benchmarking suite for Symbolic Regression. Results show that M5GP achieves performance that is competitive with the state-of-the-art, achieving a top-three rank on the most difficult subset of black-box problems. Moreover, it achieves the lowest computation time when compared to other GP-based methods that have similar accuracy scores.

Funder

CONAHCYT

TecNM

CONAHCYT (Mexico) doctoral scholarship

Publisher

MDPI AG

Reference66 articles.

1. Koza, J.R. (1992). Genetic Programming, Complex Adaptive Systems, Bradford Books.

2. Human-competitive results produced by genetic programming;Koza;Genet. Program. Evolvable Mach.,2010

3. Orzechowski, P., La Cava, W., and Moore, J.H. (2018, January 15–19). Where Are We Now? A Large Benchmark Study of Recent Symbolic Regression Methods. Proceedings of the GECCO ’18: Genetic and Evolutionary Computation Conference, Kyoto, Japan.

4. La Cava, W., Orzechowski, P., Burlacu, B., de Franca, F., Virgolin, M., Jin, Y., Kommenda, M., and Moore, J. (2021). Contemporary Symbolic Regression Methods and Their Relative Performance. arXiv.

5. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead;Rudin;Nat. Mach. Intell.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. M6GP: Multiobjective Feature Engineering;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

2. Grammatical Evolution with Codons Selection Order as Intensification Process;Computación y Sistemas;2024-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3