A Four-Variable Shear Deformation Theory for the Static Analysis of FG Sandwich Plates with Different Porosity Models

Author:

Alghanmi Rabab A.1ORCID,Aljaghthami Rawan H.1

Affiliation:

1. Department of Mathematics, College of Sciences and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia

Abstract

This study is centered on examining the static bending behavior of sandwich plates featuring functionally graded materials, specifically addressing distinct representations of porosity distribution across their thickness. The composition of the sandwich plate involves a ceramic core and two face sheets with functionally graded properties. Mechanical loads with a sinusoidal distribution are applied to the sandwich plate, and a four-variable shear deformation theory is employed to establish the displacement field. Notably, this theory involves only four unknowns, distinguishing it from alternative shear deformation theories. Equilibrium equations are derived using the virtual work concept, and Navier’s method is applied to obtain the solution. The study addresses the impact of varying porosities, inhomogeneity parameters, aspect ratios, and side-to-thickness ratios on the static bending behavior of the sandwich plates. The influence of various porosities, inhomogeneity parameter, aspect ratio, and side-to-thickness ratio of the sandwich plates are explored and compared in the context of static bending behavior. The three porosity distributions are compared in terms of their influence on the bending behavior of the sandwich plate. The findings indicate that a higher porosity causes larger deflections and Model A has the highest central deflection. Adopting the four-variable shear deformation theory demonstrated its validity since the results were similar to those obtained in the literature. Several important findings have been found, which could be useful in the construction and application of FG sandwich structures. Examples of comparison will be discussed to support the existing theory’s accuracy. Further findings are presented to serve as benchmarks for comparison.

Publisher

MDPI AG

Reference51 articles.

1. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., and Ford, R.G. (2013). Functionally Graded Materials: Design, Processing and Applications, Springer Science & Business Media.

2. Functionally Graded Composite Materials: An Overview;Udupa;Procedia Mater. Sci.,2014

3. A General Non-linear Third Order Theory of Plates with Moderate Thickness;Reddy;Int. J. Non-Linear Mech.,1990

4. Analysis of functionally graded plates;Reddy;Int. J. Numer. Methods Eng.,2000

5. Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory;Mantari;Compos. Struct.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3