Variation in Alpine Plant Diversity and Soil Temperatures in Two Mountain Landscapes of South Patagonia

Author:

Lencinas María VanessaORCID,Soler RosinaORCID,Cellini Juan ManuelORCID,Bahamonde Héctor,Pérez Flores MagalíORCID,Monelos Lucas,Martínez Pastur Guillermo JoséORCID,Peri Pablo LuisORCID

Abstract

Alpine environments and their temporal changes are rarely studied at high latitudes in the southern hemisphere. We analyzed alpine plants, soil temperatures, and growing-season length in mountains of two landscapes of South Patagonia (46° to 56° SL): three summits (814–1085 m a.s.l) surrounded by foothill grasslands in Santa Cruz province (SC), and four summits (634–864 m a.s.l.) in sub-Antarctic forests of Tierra del Fuego province (TF). Sampling followed the protocolized methodology of the Global Observational Research Initiative in Alpine Environments (GLORIA). Factors were topography (elevation and cardinal aspect) and time (baseline vs. re-sampling for plants, five annual periods for temperatures), assessed by univariate and multivariate tests. Plant composition reflected the lowland surrounding landscapes, with only 9 mountain species on 52 totals in SC and 3 on 30 in TF. Richness was higher in re-sampling than baseline, being assemblages more influenced by aspect than elevation. Mean annual soil temperature and growing-season length, which varied with topography, were related to the Multivariate El Niño Southern Oscillation Index (MEI) but did not show clear warming trends over time. We highlight the importance of long-term studies in mountainous regions of extreme southern latitudes, where factors other than warming (e.g., extreme climate events) explain variations.

Funder

Agencia Nacional de Promoción Científica y Tecnológica

Bundesministerium für Wissenschaft und Forschung

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference71 articles.

1. Identifying the driving factors behind observed elevational range shifts on E uropean mountains

2. Vegetation Mediates Soil Temperature and Moisture in Arctic-Alpine Environments

3. The GLORIA Field Manual—Standard Multi-Summit Approach, Supplementary Methods and Extra Approaches;Pauli,2015

4. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems;Körner,2003

5. The influence of topography on meteorogical variables and surface-atmosphere interactions

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3