Can Plants Sense Humans? Using Plants as Biosensors to Detect the Presence of Eurythmic Gestures

Author:

de la Cal Luis12,Gloor Peter A.1ORCID,Weinbeer Moritz3

Affiliation:

1. MIT Center for Collective Intelligence, Cambridge, MA 02142, USA

2. Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, UPM Technical University of Madrid, 28031 Madrid, Spain

3. Foundation Fintan, 8462 Rheinau, Switzerland

Abstract

This paper describes the preliminary results of measuring the impact of human body movements on plants. The scope of this project is to investigate if a plant perceives human activity in its vicinity. In particular, we analyze the influence of eurythmic gestures of human actors on lettuce and beans. In an eight-week experiment, we exposed rows of lettuce and beans to weekly eurythmic movements (similar to Qi Gong) of a eurythmist, while at the same time measuring changes in voltage between the roots and leaves of lettuce and beans using the plant spikerbox. We compared this experimental group of vegetables to a control group of vegetables whose voltage differential was also measured while not being exposed to eurythmy. We placed a plant spikerbox connected to lettuce or beans in the vegetable plot while the eurythmist was performing their gestures about 2 m away; a second spikerbox was connected to a control plant 20 m away. Using t-tests, we found a clear difference between the experimental and the control group, which was also verified with a machine learning model. In other words, the vegetables showed a noticeably different pattern in electric potentials in response to eurythmic gestures.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

1. Pennisi, E. (2018). Plants communicate distress using their own kind of nervous system. Science.

2. Sounds emitted by plants under stress are airborne and informative;Khait;Cell,2023

3. Electrical signal propagation within and between tomato plants;Volkov;Bioelectrochemistry,2018

4. Eurythmy therapy in clinical studies: A systematic literature review;Osterman;BMC Complement. Altern. Med.,2008

5. Action potentials in higher plants;Pickard;Bot. Rev.,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3