On-Line Monitoring of Biological Parameters in Microalgal Bioprocesses Using Optical Methods

Author:

Havlik Ivo,Beutel Sascha,Scheper Thomas,Reardon Kenneth F.ORCID

Abstract

Microalgae are promising sources of fuels and other chemicals. To operate microalgal cultivations efficiently, process control based on monitoring of process variables is needed. On-line sensing has important advantages over off-line and other analytical and sensing methods in minimizing the measurement delay. Consequently, on-line, in-situ sensors are preferred. In this respect, optical sensors occupy a central position since they are versatile and readily implemented in an on-line format. In biotechnological processes, measurements are performed in three phases (gaseous, liquid and solid (biomass)), and monitored process variables can be classified as physical, chemical and biological. On-line sensing technologies that rely on standard industrial sensors employed in chemical processes are already well-established for monitoring the physical and chemical environment of an algal cultivation. In contrast, on-line sensors for the process variables of the biological phase, whether biomass, intracellular or extracellular products, or the physiological state of living cells, are at an earlier developmental stage and are the focus of this review. On-line monitoring of biological process variables is much more difficult and sometimes impossible and must rely on indirect measurement and extensive data processing. In contrast to other recent reviews, this review concentrates on current methods and technologies for monitoring of biological parameters in microalgal cultivations that are suitable for the on-line and in-situ implementation. These parameters include cell concentration, chlorophyll content, irradiance, and lipid and pigment concentration and are measured using NMR, IR spectrophotometry, dielectric scattering, and multispectral methods. An important part of the review is the computer-aided monitoring of microalgal cultivations in the form of software sensors, the use of multi-parameter measurements in mathematical process models, fuzzy logic and artificial neural networks. In the future, software sensors will play an increasing role in the real-time estimation of biological variables because of their flexibility and extendibility.

Funder

EU Marie Curie Sklodowska Program, Innovative Training Network

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3