Effect of Temperature on Densification Pressure and the Unit Density in Production of Corn Straw Pellet with a Post-Heating Method

Author:

Li Chengjun,Chen Zhongjia,Wang Qingchun

Abstract

In the biomass densification process, a lot of energy is needed to prevent its spring-back and to overcome the friction between the material and the channel surface of the die so as to build up pressure. However, moisture, particle size, temperature, and type of material all influence the densification pressure, pellet quality, and the density. The research was aimed to find out how the densification pressure and density were affected by the die temperature based on an open-end densification method using a self-developed pellet extruder. When the piston fixed in the front of the extruder moved in a reciprocating way, the raw material was pressed into the opening die, which had a heater wrapped up. Crushed corn straw with a particle size under 4 mm and with a given moisture content of 10% was used to be compacted by the extruder. The results showed that with the increase of the die temperature, the value of densification pressure decreased; however, the quality of pellets was not good at temperatures higher than 140 °C. The proper temperature for corn straw densification was 100 °C, and the value of the unit density was above 1.0 g/cm³. Meanwhile, the surface quality of the pellet was comparatively good. The reference values of the friction coefficient at different temperatures were provided.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3