The Vision of Self-Management in Cognitive Organic Power Distribution Systems

Author:

Loeser IngaORCID,Braun MartinORCID,Gruhl Christian,Menke Jan-Hendrik,Sick Bernhard,Tomforde SvenORCID

Abstract

Due to the ongoing trend towards a decarbonisation of energy use, the power system is expected to become the backbone of all energy sectors and thus the fundamental critical infrastructure. High penetration with distributed energy resources demands the coordination of a large number of prosumers, partly controlled by home energy management systems (HEMS), to be designed in such a way that the power system’s operational limits are not violated. On the grid level, distribution management systems (DMS) seek to keep the power system in the normal operational state. On the prosumer level, distributed HEMS optimise the internal power flows by setpoint specification of batteries, photovoltaic generators, or flexible loads. The vision of the ODiS (Organic Distribution System) initiative is to develop an architecture to operate a distribution grid reliably, with high resiliency, and fully autonomously by developing “organic” HEMS and DMS which possess multiple self-x capabilities, collectively referred to as self-management. Thus, ODiS seeks answers to the following question: How can we create the most appropriate models, techniques, and algorithms to develop novel kinds of self-configuring, self-organising, self-healing, and self-optimising DMS that are integrally coupled with the distributed HEMS? In this concept paper, the vision of ODiS is presented in detail based on a thorough review of the state of the art.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference94 articles.

1. Organic Computing—Technical Systems for Survival in the Real World, Autonomic Systems;Müller-Schloer,2017

2. Organic Computing in the Spotlight;Tomforde;arXiv,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-awareness in Cyber-Physical Systems: Recent Developments and Open Challenges;2023 Design, Automation & Test in Europe Conference & Exhibition (DATE);2023-04

2. Coupling OMNeT++ and Mosaik for Integrated Co-Simulation of ICT-Reliant Smart Grids;ACM SIGEnergy Energy Informatics Review;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3